
1-1

���������	

��������������
���������������

� ���������	

��������������������

� ������ ���������
�����������������������������

The Office of Information Technology (IT) is aggressively attacking
HUD’s Year 2000 problem. Steven Yohai, HUD’s former Chief
Information Officer, established the Team 2000 Project Office under the
System Engineering Group (SEG) in June of 1996 with the charter to
minimize exposure to this risk by actively assisting and coordinating Year
2000 renovation efforts throughout HUD.

� ��������� ��������������

HUD’s Team 2000 consists of HUD’s IT technical staff, HUD’s computer
system owners, business partners and vendors, and Year 2000 experts from
both the government and the private sector. Anyone addressing the Year
2000 problem at HUD is a member of Team 2000, working to ensure that all
HUD’s systems and forms can be used successfully in the Year 2000 and
beyond.

Team 2000 is also addressing potential Year 2000 problems other than those
of IT systems. The Team 2000 Project Office, along with HUD’s building
administrators, are working to ensure elevators, building security, energy and
other computer chip controlled devices remain functional. These efforts are
not specifically included in this Readiness Guide.

� ��������� ������������
������������

To successfully manage and coordinate the Year 2000 effort, HUD is
employing a highly matrixed structure with responsibility distributed among
the Team 2000 Project Office, the Systems Engineering Group (SEG), and
other critical IT components, such as Computer Services Group (CSG).
Table 1-1 highlights these roles and responsibilities.

��
�����

���������	

��������������
������������������	

���������������� ���������������

1-2

������!� ������������
�������������"���#��$��������������%��&����'$$����������
'$$�����$�(�$�����������������)�*(�+

✔������������������������ ��
,-.�!�"������#�$�����$������
�,.�!����������"��%&��������

���
�����������
'����/����

���
���������)�	��

��������

%��&����'$$���

,-.

��0�����

���������

1���

�'"%��-��%2	�3'�"

'��%��������	

�&��� ������%� ����������
�����&������%�������(

✔ �,.

�''2,

'��%������ �����)�& ����������)���&���$�����������
�����&���$���������&��������������������$%�
�����&����������*������������(

✔ �,.

%�'�-���-,

���&������������ �����&���������&&���)� ������%���
&���(

✔

,�	4�	��,

'��%������!*�����������������$��� ����)�������
	

�����%����(

✔

�'""-��(2�'33!��-!,�-23�,'3�1	�-��(�-��('4

'��%���$����&��������+����������� ���$���
&�����&� ���)�*���(

✔ �,.

-,�("	�-�"	.4(���-�'3�%�'52-"

,�� �-����� &������%������������������&�������
 �%� ��)��))����)����������$�������� �-�$(

✔

%�'.�	"�	1	�-4-,,

.�)��������&������������$����������*��������&����
�����	

��&�%���(

✔ ✔

	%%2(�	�('4�%�('�(�(6	�('4

��������������������&�����/��)���0��&���&������
��� &������������-����������$������������$�! /�
&���$����(

✔
1���!2���"&���3

✔
1'��$���!,���

2���"&���3

	%%2(�	�('4�,-7�-4�(4.

��)������������-��������/�$����������������$�
*�����&��&� �&�������������������%����%� ������
�))&��&��(

✔
1���!2���"&���3

✔
1'��$���!,���

2���"&���3

	%%2(�	�('4�,��-��2(4.

,��$����%� �������������&�������� %���&������!��)�
��)�*������������	

�*��/� ���&��� ���������(

✔
,-.���0�����

��������

�'43(.��	�('4�"	4	.-"-4�

4� �*�&��)$�����������$�������� &���)�������
	

�����%������������������$���(

✔

	%%2(�	�('4�%�-%	�	�('4

����&���������$���������������� ��������������
�&&�����&����)������)� ����&�����5�������������
��&���������(

✔

	%%2(�	�('4�	4	2�,(,

���������������&��1��&�����*���*�$���������
�0������3����%� �����+����������*��/� ������������
� ��(

✔

	%%2(�	�('4��'�(4.�8��-4'9	�('4

6�/��� ������	

�&����&��������&�������%� ��
���$�������&��%���������$������&��%��������(

✔

	%%2(�	�('4��-,�(4.

'��)�������������&��)������ &�����&������������
&������������&������%������������&�����������*��
��������)���������$�������)���������������	

(

✔

	%%2(�	�('4��-��(3(�	�('4

'��)����)�� ���%�*��)���� &����(✔ ✔

���������	

��������������
��������������� ������������������	

����������������

1-3

✔������������������������ ��
,-.�!�"������#�$�����$������
�,.�!����������"��%&��������

���
�����������
'����/����

���
���������)�	��

��������

%��&����'$$���

,-.

��0�����

���������

1���

�-	��������''��(4	�('4

'��%�������$ ��������)�&����&��)���� ������	

�����(

✔

�-,'���-,�	,��-7�(�-�

.����)�����������$��)���������&���&+��������
��$�����&����������))(

✔ ✔

5��.-�(4.

' ��������������� ������	

��� ��������$���������
�)��������)������(

✔ ✔

�'4.�-,,('4	2��-%'��(4.

'�����������������������$������� ����������
��+������)������7�&��������(

✔

� ������:�� �������������%��&����"������������

The mission of Team 2000 is to ensure that HUD’s application systems and
the operating components of HUD’s computer systems are Year 2000
compliant. The CIO Council Subcommittee on Year 2000 has defined
phases of the effort for reporting purposes; table 1-2 highlights those activity
phases and objectives.

Those phases are included in HUD’s Year 2000 Project:

 1. Assessment,
 2. Planning,
 3. Renovation,
 4. Testing and Certification, and
 5. Implementation.

������!� 	���0��)�%��������'�&����0���,;���������)������('���;�����,;����������
�����������

	���0��)�%��� '�&����0������,��
�

	��������� ��������������%��� ��&���������&� ���)����&���)����������	

��������
���(�����������������$�������)��������� ����������%�����������$&�%�*��)
�������������������������������� ����������������*������� ���������(

%������ ��%� �����������$���������� ���*��/�� ���)����� ������$��������	

�� ������& ���$8
• ,������*������$�������� ����������� ���1��*���� &������* ���

& ��������������+���&���� ��$������� �����) �&��$������������������&��
���������+�����39

• .��%��� ���� &�����*��/�� ����1���� ���*��/�� ����)�����&����� &����39
• 4���� ���$�&����$��&��� ���������������$�����������&�������������)�

*����������������������������%�����������9����
• .����)&����������&���� �$��)���������� ������&�%���(

����0���� "�&&���)� �������))&��� ���&��������������&��� �&���$������������ �����
���� ��������������	

�&��� ���(��:����& ����� �&���$����!&��� ���
&�������� �&�$������&&�����&��*�������������������������&���)��$�+�� ��
�����$�����������$(

����������
�����$������

�����$���������&��������������&����������� ����)�&���������&�)� ���(��:��
�& ������0����%� ��&���)��$�����+�� ����)�����&���$��������&� �������������
���0&���$�������$����������������� ���������� &������������������������
���������������������&�������������������$��-����� ����������(��:���$��
�����&��� ���������$�����&���)&����������������;�������(

(�
���������� .���� ����������	

�&��� ����%�������)�������� &����(

���������	

��������������
������������������	

���������������� ���������������

1-4

An objective throughout all these phases is to promote the sharing of
information critical to understanding and responding to the challenge and to
appropriately represent HUD’s status to various oversight agencies and
constituents.

� ������ ������	

����������������

� ��������� ����	����������%���

The objective of this phase is to determine the overall scope and scale of
impact of the Year 2000 issue to HUD. It determines the magnitude of the
problem and provides a strategic view of what needs to be done, when it
should be done and how it should be done.

For the assessment phase, we need to develop a very thorough understanding
of HUD’s application portfolio, from a high level view of application names
and platforms to a detailed understanding of the source and object
components within a single application.

In accomplishing this we need to:

 1. Develop a complete, accurate list of applications in the portfolio;
 2. Determine the application life expectancy;
 3. Assess application risk; and
 4. Perform application impact assessment.

A Year 2000 perspective pertaining to each of the above is provided in the
following sections. Additional technical materials can be found in
Chapter 2.

� ������������ ��0���
�����
����<�	��;����2�����$�	

����������������%���$����

The inventory list is the basis of all actions and status tracking. This
information helps identify shared features, such as platforms and
languages, that help in the selection of tools as well as conversion strategies
(such as whether to upgrade or abandon a DBMS).

The inventory maintained by the Team 2000 Project Office, with the
guidance and assistance of SEG, serves as the basis for Congressional and
Office of Management and Budget (OMB) reporting.

This phase begins by developing a complete application inventory,
including names and library locations for the following components:

���Application source code;
���Object code;
���Required compilers and languages;
���Operating system;
���Utilities;
���Files;

���������	

��������������
��������������� ������������������	

����������������

1-5

���Archives;
���Third party software applications, libraries, and software tools;
���Internal system interfaces; and
���External system interfaces (business partners).
HUD used the Inventory of Automated Systems (IAS) as a starting point
for this list. We conducted extensive interviews through questionnaires to
augment the information and scanned the source code to capture additional
information components. STATUS 2000, a Lotus Notes® database
developed by ASD and enhanced by Team 2000, is based on the
augmented IAS information. Utilizing the shared interactive capabilities of
Notes, STATUS 2000 can be directly accessed and updated by application
developers. STATUS 2000 is the definitive source of information relating
to Year 2000 systems and schedules. See STATUS 2000 Database
Information , Document I, in the Reference Library for user information.

� ������������ ��������������	

��������2�$��-#
�����)

Life expectancy projections (for example, when the application will be
retired) are essential for scheduling decisions and resource assignments.

Each application identified in the inventory must have a clear determination
as to whether it:

���Will continue into the next century;
���Will be absorbed by another application, by a specific date, before the

turn of the century;
���Is being built and will be compliant when it is placed in production;
���Will expire, as of a specific date, before the turn of the century; and
���Will be replaced as of a specific date, before the turn of the century.

Some applications will not need to be renovated because they are being
replaced by other applications. It is important to monitor the progress of
the system that is to replace the expiring application. If implementation of
the replacing system is delayed, it could mean that the system to be
replaced will not expire before it encounters a century date problem. We
need a contingency that anticipates when renovation of the expiring
application must begin, and triggers an alert should the scheduled
replacement appear to falter or be delayed beyond this date. Table 1-3
helps put this in perspective.

���������	

��������������
������������������	

���������������� ���������������

1-6

������!: � 2�$��-#
�����)������=;�������>�

	

��������2�$��-#
�����) ��=;����������������>�

• :������&�%�����������&������;�������
����* ��������%����(

,����� ���� �������������%� �����)��������%�����
�����$������&���)&������)�������� &����(

• "&���� ���)������ �&������
• :���������������������������� &�����

��
• :���������������������������������

	

(

,�&����$��&��� �������������%� �����)�����&�
��������*��������������$�����%�������� �
&��� �����������������(��#�&��&����$��&��� ��
����������%� �����������$������ ��������������
��*� ��$���* ���/�!!)�������������)���<��
�0�&���������&����$��&�(

• ������� ����&�%��
• ' �����������* ���������� ���)����� ����
• =���&����������)���))&����%� �����

7���)������%�����)���&�������&��� ��&�(

2������&��)�����������������������)�������
�������)����������������������)��&���� ��������
��+��������������&������;�������(

• ' ��������������������&�%�(' ��������������&������ ����������%� ����������
�0��&���������������	

�&��� ���(��:����
�������������&��� ������%� �������������
�&���� ���)��������$�����&���)&����(

� ���������:�� 	������	

�����������>

Applications need to be studied to see how dates are used, when failure is
likely, and how significant the impact of failure would be to business in
order to evaluate when the application needs to be renovated.

A technique to manage the amount of work to be renovated is to categorize
applications by their business impact and address those that have the most
impact first. That way if we run out of time, the impact should be
minimized. Program areas can help tremendously by categorizing
applications based on their impact on HUD’s operations and mission.

Another strategy: eliminate from the renovation list systems that provide
only marginal benefit. Table 1-4 depicts a way to organize risk
information.

������!? ,�
���,;���)��$����>�(�$�������

,)����
(�

%�����
	��

5;������
	���0��)

,;

������
	

�������

-�������
3��;��������$

	

�������

��=;����
����0����
,�������

���>
-������

,>;� "�$ �
4�� �

�����$

� ��� "�$ ��4�� �
.������&�
"�����5� ���
"��������

�5
�5����
	5
�5���? @�(>
� ��

��������

� ���������?�� %��$����	

��������(�
���	���������

The impact assessment provides specific system knowledge about where
and how dates are used. This knowledge is necessary for cost and staff
estimating and as input into the analysis phase of renovation.

���������	

��������������
��������������� ������������������	

����������������

1-7

If particular care is exercised early in this phase, it can save time and
reduce efforts later (for example, when it is discovered at a late date that
one of the source modules does not exist).

This may require additional work, but can benefit the application in the
long run. Many of these same exacting tasks are required before the
application can be placed under automated configuration management
controls, such as Endevor on the Hitachi platform, Software Quality
Assurance (SQA) on the Unisys platform, and in certain cases, Source Safe
or PVCS on the LAN. Steps include:

���Verify the current executable is derived from the current source code;
initiate recovery if the correct source code is not found. The application
may need to be upgraded because the computer platform on which it
runs (such as the operating system or third party software) must be
upgraded to be compliant.

���Examine the operating system and third party software to determine if
and when upgrades may be introduced if needed or appropriate. The
examination will be performed by the Team 2000 Project Office and
Computer Services Group.

���Validate estimates from impact assessment tools by using the first five
systems to undergo renovations. These systems will also be used to
evaluate the effectiveness of Year 2000 standards and procedures.

���Identify the completeness and integrity of the source code and provide
statistics and cost estimates by using a high level scan of source
components.

���Identify specific date references, cross references and software
components useful during analysis through a lower level review of
source components.

The automated tools used in impact assessment are platform specific.
Under the guidance of Team 2000’s Project Office:

���Hitachi source code is scanned using Platinum Technology’s
SystemVision 2000;

���Unisys software is scanned by proprietary tools administered by
Unisys/Data Dimensions Inc. under contract to HUD; and

���LAN software is scanned using techniques and tools developed for us
by Unisys/ Automated Business Systems Services.

A project can arrange to have their software rescanned by contacting the
Team 2000 Project Office for assistance.

���������	

��������������
������������������	

���������������� ���������������

1-8

� ��������� ����%�������%���

The objective of this phase is to develop and manage the detailed work plan
for implementing a Year 2000 solution.

It includes:

���A HUD-wide integrated implementation plan (how applications will be
clustered and sequenced along a time line reflecting their
interdependencies and prerequisites);

���Individual application work plans (detailed work plans for each
application);

���Formulating contingency plans and monitoring their predecessors to
identify when they must be initiated to avoid disruption; and

���Identification and scheduling of other, related activities.

For the planning phase, we need to formulate each system’s renovation
schedule and HUD’s overall renovation schedule. To accomplish this we
need to:

 1. Develop a detailed work plan for each project;
 2. Conform plans to Auditing, OMB, and Congressional reporting

requirements;
 3. Cluster systems having strong interdependencies together;
 4. Identify time constraints based on life expectancy, failure date and

prerequisite events;
 5. Establish firm testing and implementation dates for all projects in a

cluster;
 6. Complete a comprehensive Integrated Implementation Plan; and
 7. Identify Contingency Plans.

A Year 2000 perspective pertaining to each of the above is provided in the
following sections. Additional technical materials can be found in
Section 2.4 (Planning).

� ������������ ��0���
���������1��>
���$���-���%��&���

The overall workplan for the Year 2000 solution at HUD must be
developed from the workplans determined for each individual system. The
individual workplan should constitute a complete and reasonably accurate
estimate of the work to be performed on that system; an estimate which
assures optimum resource utilization, achieves HUD’s goals, and assure
sufficient coordination and sequencing of work. Steps include:

���Compare inventory statistics to confirm that we are basing our plans on
a complete and accurate inventory;

���Confirm that the current production version is derived from the source
inventory;

���������	

��������������
��������������� ������������������	

����������������

1-9

���Consider several compliance approaches:
• Do nothing (the application won’t be in use at the turn of the

century or its handling of dates is not disruptive),
• Modify the system (using various techniques from data expansion

to windowing),
• Replace the system (buy an off-the-shelf package or absorb the

functionality into another system),
• Retire the system (With limited time and resources, it will not be

cost effective to renovate marginal systems. We should encourage
owners to rejustify.),

• Re-engineer the system (If we haven’t already started, we probably
don’t have time to consider this as a serious option.); and

���Determine a conversion strategy for each application. It may need to be
revised based upon a broader analysis that considers systems that share
the same files and data.

���If external interfaces are being modified, existing contractual
agreements with HUD’s business partners may require change. Allow
sufficient time in the schedule.

� ������������ ���$����%�������	;������<�'"5<����������������
���������=;��������

The designated milestones of interest to HUD’s Team 2000 Project Office
are those needed to comply with Auditing, OMB, and Congressional
reporting. Requirements. Develop system workplans accordingly:

���Set and monitor start and end dates for the following phases:
• Application Analysis,
• Renovation,
• Testing,
• Certification and
• Implementation.

���Provide weekly updates to the Work Breakdown Structure. For every
task started but not completed, verify and revise the end date.

���For every project behind schedule by more than one month:
• Provide an explanation for the delay and a management plan to

accelerate the effort,
• Provide a new schedule, and
• Describe funding and resources devoted to completing the task.

���For every task behind schedule three or more months:
• Provide an explanation of why the system remains behind schedule

and what actions are being taken to mitigate the situation; and
• Provide a summary of the contingency plan to perform the business

function should the replacement or conversion not be completed on
time.

���������	

��������������
������������������	

���������������� ���������������

1-10

� ���������:�� ��;�����,)�������0����,������(������
������������������

Systems that share the same files and data or that participate in performing
a single functional transaction or that function as a unit are best dealt with
as a coordinated group or cluster, even though multiple projects and
development teams may be involved. Steps include:

���Examine files, databases, copybooks, screens, reports, direct calls and
messages to identify dates to be modified and possible inter-application
interfaces;

���Keep clusters small to increase the probability of on-time delivery;
large releases strain even the best practices; and

���Employ bridges to limit the number of synchronized releases required.
To reduce bridges and redundant testing, cluster together systems that
exchange data.

� ���������?�� (�����$)�����������������5�������2�$��-#
�����)<�3��;���������
%����=;������-0����

Careful identification of time constraints will improve the plan:

���Eliminate systems that are due to expire; maybe even accelerate their
retirement or replacement. Remember to identify and track the
replacement early enough that a contingency can be initiated if the
replacement isn’t available as planned;

���Determine when the system will first miscalculate or be disrupted
because of the century change. This will help determine the sequencing
of work;

���Determine what other events must precede work on an application (for
example, must a compliant compiler be installed on the test system?) to
make sure the environment is ready when needed;

���Attempt to implement an application at least six months before it
experiences its first failure date;

���Identify external interfaces that send electronic data files to HUD or
receive electronic data files from HUD. External business partners must
be identified. The specifications and timeframes must be shared and
understood; and

���Consider when upgrades to compliant third party systems or operating
software will be available for development.

Take a pragmatic view of the overall plan to avoid scheduling problems
and balance the installation workload.

� ���������@�� -��������3���������������(�
����������������$������%��&�����������;����

Significant interface testing will be especially important to assure the
integrity of the data or transaction. By doing string testing of the cluster as
a whole, transactions of data among systems are moved through the cluster.
 At the end, the data is examined to confirm that the century still has
integrity.

���������	

��������������
��������������� ������������������	

����������������

1-11

Allow enough time for testing. Have a formal plan. Regard interface
testing and implementation almost as a contractual commitment.

� ���������A�� ���
���������
�������0��(���������(�
�����������%��

The basis of all OMB and Congressional Progress Reporting is the
schedules represented in HUD’s Integrated Implementation Plan. The basis
of planning and achievement will be the Integrated Implementation Plan.

Change is unavoidable and ever present. To manage change, a solid
framework is needed to track the work and determine the impact of those
changes:

���Group applications into clusters to be implemented together; sequence
those clusters along a time line and establish firm schedules understood
by every system in the cluster as well as by all those organizations that
must support the implementation of each cluster;

���Logically group systems that are closely related or inter-connected (to
minimize bridges and minimize reworking required if they were
implemented independently);

���Identify dependencies that influence when these groups (clusters) can be
positioned on a timeline;

���Schedule the most significant systems, based on risk, prerequisites, etc.;
���Consider limiting cluster size based on lines of code; extent of date

changes; percentage of compliant dates; number of programs and I/O;
and

���Consider testing impact:
• Try to avoid multiple test passes and repeated tests of the same

module; and
• Limit the need to reconcile data from two different systems.

���Consider dependencies:
• Reduce dependence on external vendors and information sources by

converting those applications early;
• Convert systems early that would minimize dependencies on vendor

software; and
• Address difficult problems early, rather than later.

���Consider opportunities for specialization (such as handling all of one
language at one point in time; or a CICS upgrade at the same time);

���Consider when these clusters are best done to:
• Address problematic, large or critical processes first,
• Achieve target goals,
• Balance human and computer resource demands,
• Minimize or maximize customer impact, and
• Precede time horizon to failure by at least 6 months.

���������	

��������������
������������������	

���������������� ���������������

1-12

� ���������B�� (�����$)�����������)�%���

An early warning system should be put in place and a contingency plan
readied that provides options should assumptions or plans not work out.

For example, if we assume we do not have to renovate an application
because it is being replaced, we need to:

���Identify the replacing system;
���Monitor the status of the replacing system;
���Have a well-formulated plan of what we would do if the replacing

system is not delivered in time; and
���Understand how long it will take to implement this plan.
���Start the contingency plan no later than its required start date so that it

can be implemented in time, even if this means work is started before it
is certain the original plans cannot be achieved.

Table 1-5 depicts a way to organize this contingency information.

������!@ '���1)����'����/������������)

,)����
(�

-#
�����
	

�������

-�������
3��;��
���

����������)��
��=;����
,������

��
�����
	

�������

4��

��
�����
	

�������

,����;��������

��
�����
	

�������

	��;�
����

�>� �.6"
�5
�5	

�5
�5���� �A? �5���? A��"&���� �
4�
 6.�B." �	5;�5���?
�5
�5���C 4�	 �	5���? A��"&���� �

4'�- ���:����0���$���� &�����* ������� �&������������� �&�$���� &����(

� ������:�� ��������0�����%���

The objective of this phase is to successfully and efficiently incorporate the
actual changes that enable the modules to be Year 2000 compliant. This
includes locating non-compliant code, replacing it in accordance with
adopted standards and certifying quality through testing.

For the renovation phase, we need to acknowledge the large amount of
change we will be introducing and the meticulous nature of this work in
order to be successful.
The following are some perspectives and techniques that can assist with
this challenge, categorized into the typical developmental activities:

 1. Analysis and design,
 2. Documentation,
 3. Modifying source code,
 4. Database redesign and reorganization,
 5. Data conversion,
 6. Bridges,
 7. Project management, and
 8. Configuration management.

���������	

��������������
��������������� ������������������	

����������������

1-13

A Year 2000 perspective pertaining to each of the above is provided in the
following sections. Additional technical materials can be found in
Chapters 2 through 4.

� ������:����� 	��)�������������

Take the time to establish a clear and comprehensive vision to guide every
step of the renovation process.

Conform with the following standards:

���HUD’s Standards and Guidelines for Year 2000 (See the Standards for
Year 2000 Conversion / Year 2000 Technical Panel, Document E in
the Reference Library);

���Established rules for century representation (CCYYMMDD);
���Federal Acquisition Regulation (FAR) language;
���Interagency Data Transfers standards (National Institute of Standards

and Technology/Federal Information Processing Standards); and
���Memorandum of Agreement between Federal and State Governments

on Year 2000 issues, dated December 10, 1997, requiring data
exchanges in a 4-digit contiguous year format.

Select an approach for conversion of date fields and determine interface
specifications and technique early.

� ������:����� ���;��������

Documentation requirements will be enforced by audit and Year 2000
record retention requirements. Regular status reporting to OMB and other
oversight agencies is mandatory.

In all cases developers will be expected to comply with HUD
documentation standards and conform to NIST FIPS PUB 38
documentation requirements for development phases. See Section 4.3.5
(Documentation) for more information.

It is extremely important that comprehensive documentation procedures are
established and followed:

���Any litigation will require reconstruction of actions and basis of
decisions;

���As bugs surface unpredictably, emergency recovery—up through and
including the Year 2000—will require us to quickly locate Year 2000
fixes that were performed as much as 18-24 months earlier.

���Auditing requirements will include the ability to trace who made what
change when and that no other changes could have been introduced.

���������	

��������������
������������������	

���������������� ���������������

1-14

Consider instituting specific naming conventions:

���Identify bridge as a bridge so it is easy to find and remove later;
���Identify the source system and the object system so it is easy to identify

between which applications a bridge exists; and
���Identify the version or generation through the naming convention used.

Not only does this make it easy to know which version may be
outdated, but the process of naming reinforces the need to be alert.

� ������:��:�� "���$)����,�;��������

The Year 2000 problem presents an opportunity to replace obsolete
technology. Some opportunities will be forced upon us because, for
example, utilities are not compliant and will not be maintained by the
vendor. Others may be things we had been planning to do but could never
get to the top of the priority list.

Automation can assist with more rote activities; but in general, there is no
safe way to perform the code replacement without line by line evaluation
by the programmer.

Employ strong change control and configuration management procedures
to keep track of what is happening. Source code changes must be
documented in a highly visible manner. This is particularly important
when, as in the Year 2000 effort, an audit is likely. The Tools Overview,
Document F in the Reference Library describes tools which can assist in
this step.

� ������:��?�� �������������������������/����

Be alert for key fields that have special meaning. (For example, 09/09/99,
12/31/99, or “00”). The Tools Overview, Document F in the Reference
Library describes tools which can assist in this step.

� ������:��@�� ������0������

Consider not only the current active files, but archived data as well.

It may be possible to reduce the level of effort by developing templates
because the design of conversion programs tends to be quite simple and
similar. Templates could help in the rapid creation of basically similar
programs. As part of this process, a list of fields to be converted is needed.

This list, which includes the old and new specifications, should be made
available to all the personnel on the team for ready reference.

Don’t forget to include in the application test plan a means to test the data
conversion process.

���������	

��������������
��������������� ������������������	

����������������

1-15

Include within data conversion the effort to appropriately “age” the test
data files. As the calendar date is advanced by “x” years, so too the data
input stream and other files will most likely need to be aged an equivalent
amount.

Determine whether or not there is a need to reflect data in a manner
consistent with another data store within HUD. For example, if any sort of
data reconciliation takes place, is it possible to make the process easier
through data conversion decisions?

Has there been adequate time reflected in the conversion schedule to freeze
the application data bases long enough to convert them without the loss of
data?

Check the HUD Year 2000 Tools Overview, Document F in the
Reference Library for tools, such as File/AID, that might assist.

� ������:��A�� 5������

Enable non-compliant access by creating a utility (bridge) that reads data in
one format and writes it in another format.

Agree to interfaces early, even in advance of renovation. Include in these
agreements who builds or eliminates the bridge and under what
circumstances each action should be taken.

Use the following guidelines:

���When an application is ready to receive compliant data (including newly
compliant data), a bridge should be built that accepts the current, non-
compliant file and translates it to the newly compliant format. This
bridge should remain until all senders are ready to transmit compliant
data and it has been confirmed that the data deemed compliant truly is
compliant.

���When an application is ready to send compliant data (including newly
compliant data), a bridge should be built that provides a second output
by converting the new format back to the non-compliant format. This
bridge should remain until all recipients are ready to accept compliant
data.

���Team 2000, with the assistance of the development teams and the
Computer Services Group, should examine all bridges as of
December 31, 1998 to identify those bridges that cannot be
decommissioned.

File/AID, a tool that facilitates data conversion on the Hitachi, may be
useful in bridge creation. See the HUD Year 2000 Tools Overview,
Document F in the Reference Library for more information on this tool.

���������	

��������������
������������������	

���������������� ���������������

1-16

Institute defensive editing techniques if the risk of receiving bad data from
external sources is high. Some examples of defensive editing include:

���Perform date validations;
���Check date dependent calculations for reasonableness; and
���Produce warnings or soft errors if doubtful.

� ������:��B�� %��&����"�������

To anticipate the nature of the work, its components, interdependencies and
resource requirements and impediments, both the Team 2000 project office
and the individual project leaders will need to plan, monitor and control the
achievement of HUD’s Year 2000 renovation goal.

Team 2000 will provide an integrated, agency perspective and will perform
common functions such as coordinating standards, achieving compliant
platforms, mediating and escalating differences, and serving as the focal
point for Congressional and OMB oversight reporting. In executing these
responsibilities Team 2000 will need:

���Budget and actual expense information on a regular basis; and
���Status information regarding schedules and tasks at a detailed level.

� ������:��B����� %	�",�*����;������
������+

Each organization working on the Year 2000 Project will record their time
to categories established in the Project and Resources Management System
(PARMS). This will enable management to evaluate if the project is
maintaining the drive and momentum necessary to achieve its component
objectives. See the PARMS and Year 2000 Budget Reporting
Requirements, Document H of the Reference Library for more
information.

� ������:��B����� ,��;�����"�����������
������

Each task required to deliver Year 2000 compliant applications for HUD
must have a detailed work plan. A report on the status of these tasks must
be delivered on a weekly basis to the Team 2000 Project Office. There are
two parts to this report:

���A General assessment of the status of the project; and
���Detailed tracking of task start and end dates and how they match the

plans.

The General Accounting Office has published a checklist against which
project management and the agency can assess progress. This checklist is
reproduced in the Year 2000 Checklists, Worksheets, and Templates,
Document D in the Reference Library.

���������	

��������������
��������������� ������������������	

����������������

1-17

� ������:��C�� ���$��;������"��������*�"+

Although configuration management is perceived as a very meticulous and
time-consuming process, it safeguards the operational integrity of our
applications by administering source and object libraries containing all the
components of each business application.

Each development team can readily evaluate the adequacy of their current
configuration practices. Indicators that current CM practices are adequate:

���Ease in finding and identifying all the necessary and sufficient source
code during the Year 2000 assessment phase; and

���Ability to readily create a definitive, complete listing of application
components.

Under normal circumstances the procedures followed by the development
teams are probably adequate to administer the system components and
avoid accidentally overlaying a good component with an earlier version or
overlooking a component. As the amount of change grows in response to
the breadth and depth of Year 2000 activity, we will begin to see the signs
of strained resources, with discipline breaking down. Pragmatically, it is
very unlikely that we will be able to completely avoid parallel development
(two teams working to introduce different requirements to the same code
modules concurrently). This will strain less sophisticated methods of
configuration management even further.

There are certain practices that should be considered for immediate
implementation to facilitate addressing this problem:

���Implement effective configuration management techniques. See
Chapter 3.

���Establish Libraries to isolate source and object code. Consider
establishing the following libraries:
• Production source,
• Production object,
• Year 2000 Development,
• Maintenance,
• Acceptance Year 2000 development,
• Acceptance maintenance,
• Staging to certification, and
• Staging to production.

���Confirm that the source and objects match the production object.
Recompile source, and relink. Compare the results of identical test
scenarios processed against both the current production and the
recompiled version. They should match.

���Add procedures to prevent accidental introduction of non-compliant
code into the environment. Make it a conscious decision and routinize
it.

���������	

��������������
������������������	

���������������� ���������������

1-18

���Add controls to prevent circumventing your procedure.
���Consider freezing production source and object libraries. Freezing a

library means there is no way to place software into these libraries
without appropriate authorization. This is a good way, procedurally, to
make certain all the checks and reviews have taken place to avoid
“reversing out” good software by accidentally installing a product that
was not reconciled with the current production version. Testing
libraries for final acceptance testing should also be frozen, and the
approved code migrated into production only from the acceptance
library. This way we are assured that what was tested is what actually
wound up in production

On the Hitachi platform, automated configuration management support is
provided by Computer Associates’ Endevor product. A companion tool,
Computer Associates’ Parallel Development Manager, compares source
code line by line in order to reconcile two versions of code that originated
from the same parent but underwent two different revisions.

For the Unisys platform, SQA from Arkdata AB provides configuration
management support that is similar to Endevor.

On the PC/LAN , Source Safe provides some library management
capabilities for source code. PVCS can also be useful in this area.

� ������?�� ��������������������$�������%���

The objective of system, regression and integration testing phases and of
certification testing is to thwart any possibility of catastrophic failure by
extensively certifying the quality of the changes, especially as the data is
exchanged among databases, modules and applications, and as the data is
interpreted and used across systems and organizational boundaries. The
goal is to complete testing and certification by January 31, 1999.

Let's make it clear that there is no real way to guarantee that we found all
the bugs or all the occasions when date functions will disrupt the
functioning of an application.

The approach is to thoroughly test the application against the production
version (a parallel test) to ensure the Year 2000 changes have not degraded
the functional performance of the application, and then to advance the date
into the next century to thoroughly confirm that the application carries out
the date functions correctly.

A Year 2000 perspective pertaining to each of the above is provided in the
following sections. Additional technical materials on Testing can be found
in Chapter 5.

���������	

��������������
��������������� ������������������	

����������������

1-19

� ������?����� ���$�����������������������	�0�����)�	$$�����;������,)����

Perform a parallel test by running the same data through both the current
production version and the renovated system and compare the results.
There should be no differences if only Year 2000 changes were made to the
software. If functional changes were introduced at the same time as the
Year 2000 renovations, the parallel test results will not be identical. There
will be differences that are the result of the functional changes introduced,
and these differences can be “explained” based on the functional changes.
A purely functional test, similar to that performed for a major release, may
be more thorough than a parallel test, but the parallel test is more efficient.
A parallel test may not require extensive functional expertise if there is a
high confidence that the test scripts are comprehensive and fully exercise a
broad scope of transactions and conditions.

For very critical applications with low functional confidence, there are
specialized tools (test data generators and test coverage monitors) in the
industry to help develop a comprehensive test bed.

� ������?����� ���$������������	

��������������;������%��$������������)�D����3;�;��
����

It is not enough to confirm that the renovated application functions for the
current year. Future date testing is crucial. Adequate testing must simulate
dates in the next century. Develop test data and scenarios appropriate for
transactions the system is likely to experience during typical processing
during the Year 2000 and 2001.

Experts encourage use of a parallel test approach as the most efficient
means of addressing simulated future date testing. A parallel test
simulating a future date requires that the test bed and transactions be
“aged” and the “system” date advanced by the same amount.

If the application uses conditional logic based on day-of-week, selecting a
twenty-eight year interval would be an advantage, since the day of the year
falls on the same day of the week every 28 years.

File-Aid is a testing tool that supports changing and assessment of files on
the Hitachi. To simulate different dates on that platform, use Simulate
2000. MODYDATE has been used for date simulation on the Unisys
platform, although a new tool, Accommodate, is currently being evaluated
to replace it. Date simulation on the PC/LAN is very application specific;
there is no overall tool for that task. The same can be said for the task of
changing and assessment of files on the PC/LAN. For more information,
refer to the HUD Year 2000 Tools Overview, Document F in the
Reference Library.

���������	

��������������
������������������	

���������������� ���������������

1-20

� ������?��:�� ���$��������5�;���)������������������

Check specific future dates or intervals to assure that the software will
continue its proper behavior. These boundary conditions include starting
on December 31, 1999, and extending into January 1, 2000; February 28,
2000 and extending into “the next day”; February 29, 2000 and March 1,
2000. Additionally, there are known values in date fields that have,
traditionally, held special meaning. We need to confirm that the system
will behave properly as the calendar achieves each of these dates, such as
12/31/99 or 9/9/99.
To simulate different dates, use Simulate 2000 on the Hitachi. A date
simulation package for Unisys is described in the HUD Year 2000
Technical Bulletins, Document C in the Reference Library. Such a tool
is not needed on the PC/LAN.

� ������?��?�� �����$������

A system will be certified if and only if it has successfully completed
current and future date testing in a fully compliant environment. Even after
it has been certified, future modifications could be a victim of old patterns
and behaviors, reducing a compliant system to a non-compliant state.
Certification, therefore, is not and cannot be independent testing conducted
as of a point in time. Certification is the convincing demonstration to a
third party that all reasonable and prudent actions and controls have been
exercised to predict with a high degree of certainty the integrity and correct
performance of this software as it enters the time horizon of the Year 2000.
 Certification requires, therefore, a demonstration that adequate testing
simulating future dates, boundaries and dates with special significance has
occurred on a compliant platform, and further, that procedural controls and
retesting are in place to inhibit contamination of a previously compliant
system.

The means by which this is done will differ depending on whether we’re
addressing:

���Certification of renovated software;
���Certification of commercial off-the-shelf software; or
���Certification of newly developed software, built compliant.

In all cases we will want the application to demonstrate that it has
successfully performed future date and boundary & special date testing on
a fully compliant platform.

Further information on certification can be found in Chapter 6.

� ������?��@�� ����(�
�����������%���

The objective of this phase is to address all issues associated with planning
and executing the transition into production, including conversion, disaster
recovery and archived data.

���������	

��������������
��������������� ������������������	

����������������

1-21

Since not all system components will be converted or replaced
simultaneously, HUD will be operating in a heterogeneous computing
environment comprised of a mix of Year 2000 compliant and non-
compliant applications and system components. The reintegration of
compliant applications and components into the production environment
must be carefully coordinated to account for system interdependencies. In
some cases, parallel processing—where the old and converted systems are
run concurrently for a time—may be needed to reduce the risk.

To adequately prepare for implementation, the renovation team should:

���Define transition environment and procedures;
���Develop implementation schedule, including extensive contingency

planning;
���Notify users;
���Resolve data exchange issues and external exchange concerns;
���Complete testing;
���Perform database and archive conversion;
���Update business resumption plans; and
���Move code into production.

Refer also to Chapter 7 (Implementation).

���������	

��������������
������������������	

���������������� ���������������

1-22

*�����
�������������$�����>������������)�+

